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Vortices in magnetically coupled superconducting layered systems
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Pancake vortices in stacks of thin superconducting films or layers are considered. It is stressed that in the
absence of Josephson coupling topological restrictions upon possible configurations of vortices are removed
and various examples of structures forbidden in bulk superconductors are given. In particular, it is shown that
vortices may skip surface layers in samples of less than a certairRgimdich might be macroscopic. The
Josephson coupling suppresgesestimates.

[. INTRODUCTION show that the energy cost of the subsurface vortex termina-
tion diverges with the sample sife
Attempts to measure the anisotropy parameter in Bi- and

Tl-based hight. superconducting compounds yield very Aem ¢§ R 1
large values~100—300" In some layered organic supercon- €T 16m2A n K\gap' @)

ductors this parameter is even higRérhis has led many to
believe that the Josephson coupling in these materials is shereA =\3,/s, A4y, is the penetration deptls,is the layer
weak that for many purposes it can be disregarded altogetheperiodicity, k=\,/&ap, and &y, is the coherence length.
Models of vortices in these compounds based on pure magrhe divergence ofAe is weak, however, and in samples
netic coupling between two-dimensional pancake vorticesmaller thanR.~ «\ 5, the subsurface termination becomes
proved to suffice for many applicatiofis® energetically favorable. Wit ,,~0.3 um, x~100 for Bi-

We consider in this paper a system of thin superconduct2212, we estimat&.~ 30 um with a large numerical factor
ing layers coupled only via the magnetic field between themso thatR. may reach a macroscopic size.
This system is qualitatively different from the bulk supercon-  This estimate is reduced considerably by including the
ductors: there is no phase coherence across the layers. Josephson coupling because one has to include in the balance
three-dimensional bulk materials vortices are banned fronthe energy of Josephson strings channeling the flux sideways
terminating inside superconductor because of topology: thinto the interlayer space. We estimate, however, that even
phase changes bym2when one circles the vortex core at thenR; remains on the order of microns. This suggests that
which the phase is singular. A core termination would havef the surface of a layered compound like Bi-2212 has defects
meant that the phase could acquire the éhange along a separated byR., the occurrence of vortex cores at the sur-
path that does not contain a singularity. face is a rare event. We also show that for a vortex terminat-

Clearly, this ban does not hold in layered systems with ndng at a depth<\ 4, under the surface, most of the magnetic
Josephson coupling. A vortex perpendicular to the layers orflux crosses the core-free layers into the free space, the ab-
better to say, a stack of pancake vorti¢es “pancakes’), sence of the core notwithstanding. Hence, we expect vortices
may terminatewe use the term *“vortex termination in the terminating under the surface to be invisible for the scanning
layer N for the situation when the vortex cores are presenttunneling technique, but detectable in decoration experi-
in the layerN and in all layers under, whereas the cores araments.
absent in the layers abow¢ up to the sample surfagén Other examples of possible but unusual configurations of
principle, at any layer and channel the flux at least partiallypancake vortices in layered materials are considered. It is
into interlayer space. This event might be energetically unshown that a vortex in a film of &nite size and containing
likely, but it is not forbidden by topology of the phase, which several superconducting layers may have normal cores only
is defined separately in each layer. in internal layers and carry flux different from the flux quan-

We argue below that within the model of layered materi-tum ¢,. The last feature appears also in exotic configurations
als with zero Josephson coupling such termination in layersuch as a stack of pancake vortices situated in every other
adjacent to the surface might be energetically favorable itayer. Implications of these possibilities are discussed.
samples of finite size. We use the formal technique sug-
gested by one of uswhich is reviewed briefly. The tech-
nigue allows us to compare energies of various configura-
tions in a straightforward manner. As one of the applications, We begin with a brief review of thin superconducting
we compare energies of two configurations: one with a vorfilms. As was stressed by Pedtlthe situation in a thin film
tex piercing all layers of a half-space multilayer and anothediffers from that of a bulk since a large contribution to the
with the vortex terminating in one of the top layers. We energy of a vortex comes from the stray fields. In fact, the

Il. APPROACH
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problem of a vortex in a thin film is reduced to that of the situations considered belowy does not vanish at infinity,
field distribution in free space subject to certain boundaryone has to examine the integk8) at infinity.

conditions at the film surface. Since cherdivh=0 out- The London part can be transformed integrating the ki-
side, one can introduce a scalar potential fordghtsidefield: netic term by parts:

h=Ve, VZ2¢=0. 2 o 4Am\?
8mel)=

3€(h><j)-ds, (10)

To formulate the boundary conditions for the outside
Laplace problem let us consider a film of thicknebss\
occupying thexy plane;\ is the bulk penetration depth of
the film material. For a vortex at=0, the London equations
for the film interior read

where the integral is over the samples surface and the surface
of the vortex core; there might be more than one sample in
the system, while not all of them may contain vortices. The
integral over the samples surface is further transformed:

2

h+ ——eurlj= ozd(r), ©) 3§ds-(j><V<p)= 5£ds-<p(V><j)
whereZ is the unit vector along the vortex axis. Averaging [take a closed contour at the sample surface, consider the
over the thicknessl we obtain total sample surface as made of two pieces supported by this
AmA contour, and apply the Stokes theorem to the integration over
h,+ Tcunz g= dod(r), (4)  each piece to show thgtdS. (VX ¢j)=0]. Combining the

result with €® of Eq. (9), one obtains

where g(r) is the sheet current density=(x,y), and A
=\?/d is the film penetration depth. Other components of fﬁ ds-
London equation turn identities after averaging.
Since all derivative®/Jz are large relative to the tangen- Th Lo th : f | ith
tial g/ dr, the Maxwell equation culh=41j/c is reduced to € EXpression In parentneses IS z€ro for samplies with no
vortices, whereas for those containing vortices it is

conditions relating the sheet current to discontinuities of the ~. ) . -
tangential field: dovsP(r—r,) wherev is the direction of the vortex cross-

ing the surface at the point, [6?(r—r,) is the two-

2
h+

c CUI’U).

A _ . 4w T dimensionals function]. We then obtain

—0gx=hy—h,, —g,=h;—h,. (5)

c c

8w 2 )
Here the superscripts stand for the upper and lower# %EZ(P(rem)_(P(rex)_ boc fﬁcoreds(hxj), (1)
+d/2) faces of the film. The field component perpendicular
to the filmh, is the same at both film faces. with re andre, being the positions of the vortex entry and
Substituting Eq(5) into Eq. (4) and using dih=0, we  exit at the sample surfacéhe vortex is assumed to cross the

obtain sample surface at right angjedNote that if there are more

than one superconductor present, but the vortex pierces only

one of them, the resultll) still holds (although¢’s differ

for each particular configuratipnFor more than one vortex

in the system, one has to sum up over all vortices. For thin

films, the integral over the core surfaced) can be ne-
hi=h;, (7)  9lected in Eq(11).

It is instructive to see now how the known Pearl
and conditions at infinity constitute the boundary conditionsresultd®! for vortex in a film and a bulk half-space can be
for the Laplace problem, Eq2), of the field distribution  obtained within the approach outlined here. We also demon-
outside the film. strate an added advantage of the method, a relatively simple

Let us turn to the question of energy. We consider a genway to evaluate energies.
eral situation of vortices ifinite bulk samples. The energy
consists of the London energynagnetic+ kinetic) inside A. Vortex in a thin film
the samplec) and the magnetic energy outsid&:

oh,  ohy
gz oz

h,+ A

):¢05(r)- (6)

This equation along with

Consider a thin film situated at=0. The general form of

. dav 4N\ 2. av the potential which vanishes at- +« of the empty upper
e = f - h2+ (T) 2|, €= f ﬁhz- (8) half-space is
Then, for the potential gauged to zercatwhich is possible d?k )
in zero applied fieltlone has qD(f,Z>0)=f W%(k)e'k'r_kz, (12
a
8mel®= jg oh-ds, (9  with k=kZ+K?. In the lower half-space we have to replace
z——zin Eq.(12). The two dimensional2D) Fourier trans-
where the integral is over the sample’s surface wighdi-  forms ¢ (k) and ¢,(k) for the upper and lower half-spaces

rected inward the material. Ifas it may happen in some are obtained with the help of boundary conditid6g (7):
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_kQDu+Ak2(QDI_QDu):¢Oa _k(Pu:k‘Pl . (13 ikx,y‘»Du:Hx,yv (23
This system vyields —Key=H,+hl¥ 24)
u z z -
Qu=— bo _ (14) The four Egs.(22)—(24) suffice to determine the four un-
K(1+2kA) knowns, ¢, andH, , ,. We obtain
We point out first that the total flux crossing a plane b bok
=const is — 0 HeE—— (25

Ckqk+qA2F qAqHKAE

<I)Z=f h,d?r=h,(k=0)=—ke,e Y _o=¢o (15  We do not write dowrH, , which describe the spreading of
the vortex field under the surface. Equatiq@$) coincide
for any z, i.e., the film is crossed by the flug,. And the  with Pearl’s solutiort®

second: according to Ed11), the energye of the Pearl To evaluate the energy of the vortex in this case with the
vortex is given by help of the general resulll), we first calculate the potential
at the vortex exit:
8me 0 P _f d2k 20
(To—sm( )= @y(0)=—2¢,(0)= (272 K1+ 2KA) (0)=f a2k - o 8
® (2m)?2 ® 27N\’
. ¢0J’27T/§ dk 16 ) . ) X
=)o 1+2kA’ (16) The energy associated with the core, i.e., the integral over the

core surface in Eq11), is
where the cutoff ak,,~27/¢ is introduced to a logarithmi-

cally divergent integral. This yields 2c 0 .
v divergent integrel. This ¥ Seame| adni .. @)
) a
€= nfam——|. : .
16m2A ¢ Integrating the London relation
. C¢o 2’77
B. Vortex in a half-space Jo=— 8222 Vo+ (TA (28)
T 0 /y

Let now the half-space<0 be filled with a supercon-
ductor having the penetration depth The stray field in the over a circle of a radius, we obtain for the current density
free spacez>0 is given by the potential12). Within the  near the core
superconductor we have the London equatidn The gen-

eral solution can be written as )= Cog 29
h=h(© 4 h), (18 T8 mAN2r

whereh©® solves Eq.(3) with zero right-hand sidéRHS), ~ Which results in

whereash™ is a particular solution of the full Eq3). The o

latter can be taken as the field of an infinitely long unper- Ec:ﬁj dzh,. (30)

turbed vortex along; this assures correct singular behavior 8m) o

h is. The Fouri f f this field i
at the vortex axis. The Fourier transform of this field is Using H, of Eq. (25) with Egs. (11) and (26) we obtain the

b energy cost of vortex termination at the surface as
V=23 (19
1+ 2 (= 0.57
7 m e (31
We now Fourier transform the homogeneous Bj.for 1672\ | 2 n«

(0) i i '
hi(r) with respect to the variable and obtain where ¢, is the energy per unit length of an unperturbed

h(k,2)(1+k2\2) —\2?hO(k,z)=0,  (20) Vortex.

WherEi:X,y,Z. The solution which vanishes deep in the IIl. SUBSURFACE TERMINATION
superconductor is
A. Half-space + a thin layer
h{(k,2)=Hi(k)e%, g=y1+N*k?\. (21 We now turn to a stack of pancake vortices perpendicular
to the layers of a half-space layered sample. The layered
structure has the periciwhereas each layer is characterized
ikyH+ikyHy+gH,=0. (22) by the Pearl length\ =\?/d with d being the layer thick-
ness. Note that thmeasurabldength\ ,, is related to other
The boundary conditions at=0 read lengths in the problem by

Here,H,(k)’s are not independent: div®=0 gives
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xgb:xza:/\s. (32 HY =H,———.

Let us consider first the stack with a missing pancake in The energy cost of vortex termination, i.e., the difference
the top layer. We model the rest of the stack as a continuougetween the situations without and with the top pancake, is

half-spacez<0 with the penetration deptky;,.° A thin film
with the Pearl length\ is situated az=s. In the two do-

mains of free space>s and 0<z<s, the 2D Fourier trans-

forms of the potential are
‘Pu(k)eikzu

@1(k)EX*+ py(k)e ™,

z>s, (33

0<z<s. (34

On the film atz=s, we have the boundary conditioi§ and

(6). Three more equations are provided by the field continu-

ity at z=0. The requirement die{®=0, Eq.(22), completes
the system thus providing enough equations ¢qr, ¢,
andH, ,:

2¢0A32ks o

Cuv="_ 5 P1= )

Y DaAZ, DgknZ,
¢0€2ks

©y= (1+2kA), (35)
Dgkr2,

D=q—k—(1+2kA)(k+q)e®*s

and
Ha0= —20 (1 e 11 2kA)] - —22 (39

a\3p 9°\ap
whereq is defined in Eq(21); H, , is not needed here.
The fluxes through planes=const are

®,= ¢0A+—)\ab, z>s, (37

®,= ¢y, z<0. (39)

Within the layer 0<z<s, the flux ®, decreases from the
bulk value ¢ to the value(37). Therefore, a small fraction

of the flux,

Dol ap! A= poS/\ ap, (39

is channeled aside between the half-space and the top fil
Using the same formal scheme, we can solve the problem
when the film atz=s contains a pancake vortex. The only

difference with the case of “half-space an empty film” is
in the London boundary conditiof¥) on the film atz=s.

We skip details and provide the result denoting the new so-_

lutions with a star:

* ¢Oeks 2ks
oy =@yt W[k—q+(k+q)e 1,

¢Oeks

@1 = 591,21W(qi k), (40

given by

8

5 Ae=[—@ed0)]=[@en(S) — Pex(S) — ¢ex(0)]

0
+f dz(h,—h¥); (41)
the last line is the difference in core contributions of vortex
lines in the low half-space, see E@O).
Evaluating the Fourier integrals fgr's, one notes that the
integration overk is done within the domain 2/R,2%/&
where R is the sample size and is the coherence length
(usually calledé,p). For s<¢ one can expané %S in the
denominatoD and see that the term withcan be neglected.
Indeed, by introducing a new variable suwaki,, and uti-
lizing A>\,,, we obtain

D~ —2K[ 1+ (A/Ngp)€']~ —2KE"A/N . (42)

This results in a factor N=s/\2, in front of the integrals.
Then, in the linear approximation 8)we can ses=0 in the
integrand after which all integrals become simple. We obtain
after a straightforward algebra:

¢ .
T 167°A

R

(477)3/2K)\ab

Ae . (43

It is of interest to obtain the current distribution in the top
film. To this end, we write Eq(12) in cylindric coordinates

dk k e
o(r)= f S Jo(kng(kje % (44)
The tangential fields above and under the film are
»dk
h'=— fo S Kdukn e
_ =dk _
hy=— fo Zszl(kr)(QDlekS"‘ ©,e7%9).
(45
mT he sheet current is given by
T P =k2dk ks
< 9.=hr—h =2f0 > Jukne €% (46)

where the boundary conditiof?) at z=s, ¢,+ ¢,*°— ¢,
=0, had been used. With the help of E42) for D, we
obtain after integratiofisee Ref. 12, Eq6.663]:

Cdoo r r
= Iy Ko )
8772A7\ab 2Nab 2N ab

wherel, K, are modified Bessel functio$ Thus,g, van-
ishes ag In(2\4,/r) whenr—0, and as X/ for r>\,;,.

9 (47)
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We note that the same formal scheme can be applied to z
consider the termination of the pancake stack in the second, 2s
third, etc., layer from the top. The length characterizing . A a
the top layers with no cores should then be takem&, ' b
A/3, etc. 0
s A i
B. Vortex in a finite stack of layers

As an example of such a system we consider a pancake in FIG. 1. The unit cell of a periodic structure<z< 2s.
middle layer of a “short stack” of three films. Let the pan-

cake sit at the origin of the film a&=0; the film is charac- 2
. ; . 8me d<k
terized by the length\. At z+ s two other films are situated —=[@c— @plr=z=0=— ZJ —— (Pp1t @p2).
having the film penetration depth;# A. Following the 0 (2m
same method we write the 2D Fourier transforms: (55)
e % z>s, U_sing the same argument as that leading to (B8), we
obtain for the denominator
kz+ —kz <7<
Pp1€ T ppe Y, 0<z<s, (48) 2A+A4
o€t pe K%, —s<z<O.

Integration in Eq(55) is now easy.

Consider the casd ;= A and sets=0 (everywhere ex-
cept in A=\?/s). Integration yields for the energy of one
pancake in a stack of three films

Due to the symmetryh,,(z)=h.,(—2), and ¢¢1=— ¢pz,
¢co=— ¢p1; this leaves only three coefficients to be de-
termined. The boundary conditioifg) and (6) atz=s give

QDa+ quIGZkS_ quZZ 0’ (49) ¢g/3 16772A2R
oks _ €010~ 5N T (57)
©a(1+ kA1) — kA 1(0p1€75+ @pp) =0. (50) 16m°A 9¢
The third equation is provided by the London boundary conwhere it was assumed that the sample &ze27A and the
dition (6) atz=0: subscript 010 is to indicate that the pancake is situated in the
middle film. This is to be compared with a vortex piercing all
@p1(1—2KA) = @po(1+2kA) = g /K. (51)  three layers, which can be considered as a Pearl vortex in a

o -~ _ o single film with the effective film penetration depth/3.
The continuity condition(7) for h, atz=0 is satisfied iden-  Then, according to Eq17),

tically. Equationg(49)—(51) yield

3¢5  4mA

2¢oA bo 2ks €= IN—, (58)
= =@ 2 3
$a="p  PTyp © T 16m2A 3
and the subscript 111 indicates that each layer has a pancake.
o The difference of energie$7) and(58) is negative if
orz= (14 2KAL), (52 gIee 7 and (58 s neg

R<A(A/&)S (59

— —2k
Dy=(1-2kA)e™ "~ (1+2kA)(1+2kAy). and we have omitted a large numerical factor. This suggests

that in the stack of three films, vortices carrying the fiby(3
with a core only in the middle film might be energetically
A preferable to standard vortices piercing the whole stack with
d.(z>5)= 1 the flux ¢¢. It is worth noting that because our solution holds
Z(Z S) ¢)02A A ’ . . N . .
+At+s for A# A4, in fact, it applies also to a vortex piercing
middle layers of the R;+ N stack of layers provided that

The fluxes are

. Agts—z bothN;s andNs are less than ,,; this allows us to treat the
d,(0<z<y)= ¢0—2A+A1+s' (53 N;s as one film withA;=X\2,/N;s.
Note that the fluxges/(2A + A1) << ¢q is deflected into the IV. INFINITE DILUTE STACK OF PANCAKES

space between the layers. Foe- A > s,
We consider now an infinite stack of layers. Let the layer
1 atz=0 and all even layers be free of pancakes; the pancakes
.= ‘/’Oﬁ- (54) are situated at= = s and at all odd filmgatr=0). Consider
three regionga) s<z<?2s, (b) 0<z<s, and(c) —s<z<0
Note also that for\ ;= A>s, the flux piercing the sandwich (see Fig. 1
made of identical films ishy/3. The energy is given by The 2D Fourier transforms
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©a= 016+ pape ¥ (60)  Comparing this with the line energy of a standard vortex
(holdmN )2 In k We see that dilute stacks considered here
©b= 0p1€%+ ppe ¥ (61) are possible in small samplegvhiskers of a size R
<)\abK3.
Pc= (Pclekz+ Qo€ k2 (62
Due to the symmetry with respect ta=0, hy,(2) V. DISCUSSION
=hc—2). This givespc; = — @pa, ¢c2= — @n1. Further re- We now estimate how the energy c¢48) of the subsur-
lations are provided by periodicity which can be expressed agyce vortex termination is affected by the Josephson cou-
haz(z) =hc(z—2s) and yields pling. Clearly, this coupling breaks the cylindrical symmetry
B ks B oks of the field associated with the straight stack of pancake vor-
Pa1™ T Pp2€ T Pa2T T ep1€T ®3  fices, and the flux39) will not be spread even in all direc-
Thus, out of 6 unknown coefficients of the system Ef)—  tions in the space between the top layer and the rest. Still, for
(62) we are left with only two. As the two needed equationssmall samplesR<A;, in which the string cannot fully de-
one can take the London conditio(® at z=0 andz=s: velop, the asymmetry can be disregarded. Since the phase
difference is zero for perfectly aligned stack of pancakes for
©p1(1—2KA) = @po(1+2kA)=0, all pairs of layers except the top one, the Josephson energy

can be estimated as
©p1€°(1+2kA) — @pre K(1—2kA)=o/k. (64)
2
This gives _ %o JR
€T G 30 2
& 8w shgJo
0
<Pb1=k—D2(1+2kA),

27
rdr d6é(1—cosh)
0

2 2 2
$oR )  # R 70

bo 25(47T>\ab>\3 8m2A N5
(szzk_Dz(l_ZkA)’ (65)
On the other hand, foR>\;, the integral in Eq.70) is
D,=e*S(1+ 2kA)2— e KS(1—2kA)2. rou_ghly proportional to the string aréd\ ; because\ ; is an
estimate for the string width:

The flux at any plane=const within the domairib) is

readily evaluated: 2 #% R
€= R)\J: . (71)
— —0)= kz —k 83s)\ 2 8m3A AN
®p(2) =hp(k=0)=[kpp € —kppe ““J=0 T SA¢ 77 J
2A+2Z ¢y The energieg70) or (71) should be added to the estimate
= ¢°4A—+ =5 (66) (43) for the energy cost of the subsurface vortex termination.
S Taking, for example, Bi-2212 wits=15 A, A ;= 4500 A,
Similarly, in the domair(c): K=Ngap/€ap="50, we have foR=1 w:
2A=2z ¢y ¢5 | R 2R
P(D)=do T~ 5 (67) Ae=—2—In )+— 72)
4N+s 2 16772A{ KNap(4m)¥2) TN (

Therefore,®~ ¢(/2 everywhere throughout the system. ) . ) .
Since we have in this case only one pancake per the pd¥€ estimate the logarithm here as-2 [disregarding the
riod 2s of the structure, the line energy of the staek factor (4m) ~%% which could reduce this estimate to4].
= €,/2s wheree, is the energy per pancake: The Josephson correction iR2r\ ;~1.4. Thus, in micron-
size samples of Bi-2212, the termination of vortices under
87ep the surface is possible.
& = @p(S) — @a(S) The above treatment is concerned with the case of zero
0 applied field. The energy cost of the subsurface termination
) should increase with increasing applied field. To have an
(@p1€5S+ @prek9). estimate of this increase, one can evaluate th_e Wprk needed
(2m)? to remove a pancake from the top layer of a cylindrical samle
(68)  of radiusR in the presence of a small external figtt,.
Since one layer screening ability is weak, we assume the
As above, within the integration domain we can simplify field uniform, which corresponds to the asymuthal current
the denominatorD,~8kA, and sets=0 in the integrand. density j =cA/4m\?=cH,r/8m\? (the vector potential can

=2¢a$=2J

Then we obtain after integration withiniZR, 27/ &: be taken asA=H,r/2). The work of the Lorentz force to
5 remove a pancake from the center is now readily obtained as
:( bo ) nE (69) ~H,¢oR?/167A. To compare with the estimat€’2) we
8\ ap & write the extra cost due to the applied field as



PRB 61 VORTICES IN MAGNETICALLY COUPLED. .. 1629

¢%  H,mR? superconductors in which, may reach a tens-of-micron

€2~ 162N b0 (73 size at low temperatureee, e.g., Ref.)2as well as for
superconducting multilayers where the Josephson coupling

Since the expression in parentheses of &) is on the can be reduced by varying the interlayer spacing.
order one, we can say that the energy gain of the subsurface
termination is lost in fieldH,~ ¢o/7R? which givesH,
~10 G forR=1 u. This sets an approximate upper bound ACKNOWLEDGMENTS
on fields in which the subsurface termination may occur.
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